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4Summary

Sever'l que'iin- mouels are considered in wvich a job requires a

number of different services. The services are performed in any sequence,

possibly simultaneously, by a number of servers. Steady state probabili-

ties are found for two service jobs processed by two server systems. In

the first system, the two servers work on the same job if they are working.

In the second system, the servers may work on different jobs. If server

one is working on job k, server two may be working on job k-l, k, or k+l

but not on k-2 or k+2. In these systems, the servers are specialists. In

the third system, the servers may perform either of the two required serv-

ices. If one has bogged down, the other server does both parts of each

job



1. Introduction

Cueuing theory thus far has concentrated on the study of single

server or parallel channel queues. Since the former is only a special case

of the latter, study has focused on only one type of system element. What

network theory has been developed concerns the processing of jobs requiring

a sequence of services at different facilities. The purpose of this dis-

cussion is to focus attention on more general organization, in particular,

the need to relax the serial nature of systems. The traditional models of

production processes are the job shop and line. Both concepts emphasize

the serial nature of operations; the former allows many sequences while the

latter uses one fixed sequence. It is interesting to note that the concept

of line production is associateu with assembly lines historically. Perhaps

a more natural model of an assembly type process is a pyramid where each

stage of production combines the outputs of a number of different sub-

processes.

The simplest possible case which proviues at least some of the

flavor of the more general organization is one in which a job requires a

number of services by an equal number of servers with no sequencing restric-

tion. Assuming that a job consists of n parts and that the system has n

servers, the n servers are permitted to work simultaneously on the n parts

of the job. Admitting the possibility of simultaneous work by the servers

does not mean that this is necessary or desirable. A number of disciplines

could be used to control such a system. At one extreme, one might require

all n servers to be idle before a new job could start. At the opposite end

of the spectrum of disciplines, one might have each server perform as much

work as he could on every job in the system before becoming idle.

This class of systems introduces a second kind of queuing into the

system, for ,iot only are jobs waiting for processing but also there is an

inventory of partially completed work. If the n servers are a sub-system of

a larger processing system, there will be two inventories between successive

stages of production corresponding to partially completed and fully com-

pleted jobs. The importance of the partially completed job inventory natu-

rally varies greatly with the queue discipline which is used. In systems

where each of the n servers is busy so long as there is any work that he

can do, the inventory will be important if not excessive. The situation

will be even more critical if priorities are used in the selection of the
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next job to be done by each server so that the different servers may process

jobs in different orders.

Unfortunately, it appears that analytic work will not produce

explicit results for any large number of these systems. Even the assump-

tion of poisson input and negative exponential service times which assures

that the steady state probabilities may be studied by solving systems of

linear equations does not simplify the situation sufficiently. The major

difficulty is that the state of the system becomes a two-dimensional quantity

even in the simplest models. One approach to the study of these models is to

show that solutions have a particular form involving some parameters which

are the roots of a polynomial equation of high degree. The crucial point

here is to show that the roots are distinct. Rather than follow this ap-

proach, this paper considers simple systems in which the parameters of the

solution may be found explicitly. This facilitates the comparison of

different types of systems which is so necessary in developing understand-

ing of networks of queues.

2. One Job At A Time

The most restricted queue of the type considered requires that

all n servers work on the same Job if they work at all. This minimizes the

partially completed jobs inventory and also the capacity of the system. For

want of a better measure, the maximum load for which a steady state exists

will be used as the measure of capacity. Having already assumed negative

exponeutial service times, if one further assumes that the service rates

are equal, he has a particularly simple system. The system is completely

equivalent to a single channel system with a special negative exponential

phase service process. The service process is not Erlang but a close

relative. The relation of the job service time to the server service time

is:

prob (job service time < t) = (prob (server service time < t)]
n

For the negative exponential with mean /4 for each server this is:

F(t) = [ 1-e-At]n

using F(t) to denote the distribution of system service time (T). The

expected service time is given by:

-A n
E(T) = -Jtn(l-e - ,t)enle°tdt = _

J6-i IAA
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This suggests the rational for the construction of the equivalent phase serv-

ice; n phases with the mean of the i'th phase - or with service rate(M+l-1)
(m+l-i)A4

The first phase is the time to the completion of the first service regard-

less of which server finishes. The second phase is the time between the

first and second completions, again regardless of which servers finish, etc.

The first phase is then the minimum of n independent negative exponentials

which is, of course, a negative exponential with mean 5. The second phase

is similar due to the forgetful property of the negative exponential but

only n-l servers are functioning. The process continues until the last phase

is the extra time required by the slowest server.

Analysis of the queue in this system presents no great difficulty.

The situation is best understood from a picture. Let N be the number of

jobs in the system, including the one in service in conventional style, and

N2 be the number of services which have been completed. The state of the

system is the two dimensional random variable (N1 , N2). The diagram for

definiteness is for a four-server system and only for the first three values

of N which is assumed to have no bound.

N J 1 2

2 .&42N1 4 . 3 , 2 .

0 1 2 3 N2

The normal queuing equations can easily be constructed for an m

server system.
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dPn (t)/dt. Pnl M j) (-A-M,,,) 0 P (t)=nI n - 1 , n , 0-m l
I ' /

+ (m-l 0

dPn,m(t)/dt n Im(t)! G 0 ) n,m /(t)

io 0 0 0 /,, Pn+1,0(t) '

0 0 0 0 0

+ o o

:o.jn+I (t)~

0 o C: pn+l,mM

In steady state, the left side is, of course, the zero vector. Furthermore,

by summing equations one easily verifies that:

&P =) P

n+l,m , . n,i
i=O

using lower case p's for steady state probabilities. With this substitution

and using Pn for the vector with components p n,i' i = ... m.

-m/ (++(m-1) 0 
0

Aipn = 0 -(m-l> (+.)+(m-2)/,) U P,- " n

0 0 -(m-2) , 0

\/

This format of the recursion relationship corresponds to iPi =

for the simple queue which permits direct transitions only among neighboring

states of the system. The relationship is in good form for nunerical work,

since the operations of matrix inversion and multiplication are readily

available on computing machines.

Further work on the relationship would require that the matrix on

the right side of the equation have an easily obtainable inverse in terms of

the symbolic service and arrival rates. This step is really not important,
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however, for it is really the representation of the nth power of the inverse

which is needed. If the eigen values of the inverse are all distinct, the

representation of the nth power takes on a simple form. The eigen value

problem is thus at the heart of finding a simplification of the relationship.

The same problem precisely is found if one uses a generating func-

tion approach. Let:

= i z and t 1$.

Then by multiplying the steady state equations by the appropriate power of

z and summing one obtains:

0 0 0 +M/4

0(M-lX) )z-. -(m-2),,( 0 0I/P 0
O 0

for z=l the matrix on the left is singular. This difficulty can be repaired

by replacing one equation by the sum of the equations divided by (z-l). The

sum of the equation is:

[Mz-1) , ),(z-l) , . ( z-):(z-l)) 7!-;
z

or [0.,, (r'- ' 0
z

This is the same device used to reduce the original recurrence relationship

involving three groups of probabilities to one involving only two groups.

If the generating functions are to assist, one must solve:

M/, ? z--(m- 1)/ 0 0 / mPO, 0.

0 (m-l)4 A z-,- (m-2), 0 0
I

00 /

0 0o 0 AZ/ /



This requires the inversion of the matrix on the left. If one wants not

only the moments but also the probabilities, partial fraction expansions

will be required. This is the eigen value problem in the previous approach

in a slightly different form.

Although it is possible that there is a reasonable representation

of the eigen values as functions of the number of service phases, the func-

tions have not been discovered. For the purposes of this paper since the

same difficulty appears in variations of this system, attention will be

focused on the simplest possible case, two servers. In this case, the gen-

erating function equations are:

X~/z 7F=

After some algebra this becomes:

/ \2-AZ)D \9t
22 2

2 Azp0  go0

As usual, the POO can be eliminated by t 0(1)+, (1) = 1. Thus:

= 0or PO0 O 
= l-

Since this is a probability, it must be between zero and one, which re-

stricts ',AA to be less than 2,3. Using,.- for V, the expected number of

jobs in the system, E(N1), is found from:

E(N1) = (l)+f(1)

where the prime denotes differentiation with respect to z. Simplifying the

result gives:

E(N) = 2-3l
2-3,^
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Since T(l) and /1'(1) are tue marginal probabilities in N,, the

expectation of N2 is just -r (1).
2 1

E(N2)  . 2 A,,.-3 ,.
2 /-3 2/" ) =

This is, of course, both the probability that a phase of a job has been com-

pleted and the expected number of completed phases.

Finally, the p's may be obtained:

____ n + )+4 + np -e n + -en,O~ 2 1,12t 2
(1-/ / ;"+..+:- n-l + -)-3,.+1- n-1

Pn,l e2 - e

where i 2 and

+3,..+ N - + . -el = . e2 = 2.
1 2.. 2 2

This is a rather awesome quantity of symbols. By substituting the values of

e and e2, one can write these expressions in a form in which the square

root has been eliminated. Thus, this representation is only a concise way

of writing rational functions of polynomials of degree 2n+l in A and L,.

The comparison of these results with single server systems is rea-

sonably straight forward. The capacity has been reduced to 2/3 of that of

the single server queue with service rate/, or this same system with each

server working as long as there are jobs waiting regardless of the progress

of the other server. The same comment holds if one considers the single

server system which processes both parts of the job. One might envision this

type of system if the two servers could work co-operatively on the same item

without interfering with each other. Such a system is an E/E2/1 system. A

strong word of warning needs to be injected before one comes to the conclu-

sion that this form of organization is dominated in the sense that it must

always produce more congestion. In real systems, it is generally far from

true that division of a job into parts for processing by specialists corre-

sponds to going from E/E/I to the present system. The specialist doing
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half of the job often takes much less than one half the time. Thus, these

results indicate some order of magnitude which the effects of specialization

must have on the service time if congestion problems are not to change radi-

cally. Furthermore, this one measure of capacity does not tell the whole

story about congestion.

3. Two Jobs At A Time

One would undoubtedly like to describe the general situation as a

function of the maximum number of the jobs in the in-process inventor:-. If

one is content to leave the results in terms of some parameters which are the

roots of a polynomial equation, this can be accomplished. On the other hand,

if no such parameters are allowed, the possibilities are severely restricted.

In the former case, numerical work seems required to stimulate one's under-

standing of the system and the latter is the spirit of this paper. In the

limiting case where the servers only stop work because of a zero queue of

work of the appropriate type, the servers act independently. As far as the

phases of jobs yet to be started, such a system looks like n independent

queues. The capacity is obviously one. The size of the work in process,

however, is not clear; for it cannot be studied by decomposing the system

into n independent queues. At lease one special case can be solved in the

sense that the distributions of the queue sizes can be found explicitly. This

is the case of the two server system in which at most two jobs can be in

process at one time. One important reason for this is that again summation

of the equations will reduce the recurrence relation from one involving three

groups of states to one involving only two groups.

Another way of stating this guarantee of easy solution is that it

is possible to divide the states of the system into groups, which may be

ordered, and that transitions from a higher group to a lower one are made

only from one state in the higher group. That this is true in this case may

be seen by reference to the state space diagram. Again N1 is the number of

jobs in the system and N2 is the number of job parts which have been com-

pleted. Assuming equal service rates for the two servers, it is unnecessary

to keep track of which server has completed which job. Only the first part

of the diagram is shown, the same pattern is repeated for higher values of

N1
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N 3 . _-. -

'

0 ,

0 7 2 N2

It is no longer true that any grouping will have the required

property. If one forms groups (n,O), (n,1), (n+i,2), the only state of

the group from which one may move to a lower group is (n,l).

Again let P be the vector of steady state probabilities of then

states in group n.

PPn, '
p =

n Pn,O

\ Pn+l,2 /

For convenience, a rather odd ordering of the states has oeen used. The

basic steady state equations are:

-2., 2 .0 0 O\

/ \.'
0 =/Pn- + 10 -A 2 0 P + , 0 0 p

0', 0\ 0, 0 i

There are, of course, appropriate modifications for the P vector since

states (0,1) and (1,2) do not exist. Also, it is not possible to have

services in state (0,0), and state (1,1) allows only one server to be busy

while in other states (n,1) both servers are busy. The special problems of

the first few states are, of course, irrelevant to the fundamental question

of how to simplify the basic recurrence relationship. Dy summing the gen-

eral equations for all index values larger than n one finds:
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APn,o +  Pn,l + APn+i,2 = 2.ep

Using this pn+,1 can be eliminated from the general equations giving:

'-2 \12+2/A - /2 PnIn n 2 - 12 -2 +/

The inversion of a three by three by hand although tedious is nevertheless

quite feasible. This gives: P = !1Pn n-i

where / A/2A
.2 2 A('+3.)0 >(+-) A2+3/i,,+4/ 2  ('3

R 2/ ( 3A+ 4 /,,) 2, (37, +4)

2 2:
_____, __ _ ;,(A,+4,.) ' +4Am +8.24

2 2 2
S2,,(.,,+4, 2, (3,+g... 2 / (3 +.,) /

The equations for the probabilities of the first few states are:

0 = -p0, 0+ p , 1

0 = -(p'+4PI,1  +2/P1,0 , P2,2

0 = APo,0  -(;+2)p1,0 i/",2,1

0 = -0(+') P2 ,2 "P2,1

0 = % P, 1  -(+2/,)p2, 1  p3,1

By subtracting the first from the second, the second, third and fourth

equations can be made to follow the general recurrence relationship except

that P0 must be redefined. Let P0* (p0,0' p0 ,0 ' 0)
t . Thus Pn may be

expressed in terms of P *

P = RnP0* n > 1

Unfortunately PO,0 is still an unknown in this expression. Although further

transformations of this relationship are possible, they do not appear to
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stimulate one's intuitioi. There are three real distinct eigen values of

R, but they are not simple in form. The cubic equation w.iich they satisfy

does not factor easily.

The evaluation of p0 ,0 and the mean number of jobs in the system

require summation of the p's. For analytic work, generating functions

appear to be somewhat easier than direct methods of attack. Again define

p nz and ./ = , ,,)
n=O

From the original form of the steady state equations one obtains:

Z 2A /(/z 0 F' !/ /2,,., 0 P,

I 
I

Remembering that the first steady state equation is A P, =,/4pI,I it is

possible to eliminate P1 ,l" Furthermore, the problems at z = 1 can be

eliminated by replaci:Zg onc equation by the sum of the er,,ations divided

by (z-l). Completing both operations one obtains:

>-A-2/. /z/- 0 7 . P0,0  /

> -/Z .- PIZ 0P,

From this one obtains:

I

where

33 .32 2 2 3 2 2 3
d =z-2,N z - , z8 + -?A 4k



12

At z=l, -'gives the marginal probabilities in N2 in terms of p0 ,'0

7"() POO2=/4 4,,-, /' -2, i
2

Summing these probabilities and equating the sum to one gives p0,0.

p 44-5;1,
0,0 = +4/,

The condition that operations are all valid is that p 0, be a probability.

Since the numerator is always less than the denominator, one need only re-

quire 4-5>'> 0 or : <4/5. Thus the capacity of this system is 4/5

compared to the 2/3 found for the previous system.

The expected value of NI can be found from 7 '()+ )I'(l)+ 712 '(1)1 0 1 '

Carrying out this process using ,,= '/4, one finds:

E(N ) = r (12+5 )(2-,..)
'(4+-) (4-5,..)

Inspection perhaps is not sufficient to relate this to the value found in

the previous model; however, when plotted as in figure 1, the anticipated

reduction is clear.

The expected number of completed job parts still in the system,

E(N2) may be computed as before.

E(N2) 0/10 l)+l (1 )lJ l) = (14+12 0 .' /1()=/4+.,

This is, of course, always greater than /cwhich was the value in the pre-

vious system.

4. Unspecialized Servers

Another system which can be easily solved completely occurs if

one changes the nature of the servers. Suppose the servers are not special-

ists, so that either server can process either part of a job. The algebra

is only easy if one continues to consider only two-part jobs and two
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servers; thus, this restriction is maintained. In this case, as long as there

is a part of a job waiting to be started, neither server is idle. This model

undoubtedly is much less general than the previous ones in which the servers

were specialists, but it provides some insight into congestion processes.

The definition of the state of the system variaole is the same as

in the previous section. In fact, the problem is only changed in that one

transition rate, (n+l,2 ) to (n,1), has been increased from /,,to 2, since

both servers are always busy if there is any work. This change introduces a

symmetry into the state space diagram which was not previously present. Not

only are the transition rates (n+l,l ) to (n+l,2,) and (n+l,l ) to (n,O)

equal but also the rates (n,O ) to (n,1) and (n+l,2.) to (n,l ) are now

equal. Thus, there is a symmetry in the role of (n,O) and (n+l,2). State

Space Diagram:

N 4 2" __

3"2

2 2. ~ _ _t 7
1 2" 2

• •'

0

0 1 2 N2

The existance of state (0,0), however, prevents the symmetry from being

perfect which would permit a reduction in the number of states to be con-

sidered.

The solution process follows that of the previous model. The

recurrence relationship is:

-A-21A 2,. 2/' 0 0 0

0 = >'Pn + 0 -,A-2, 0 P + 0 0

V
0 -- t. + ..'- 0 0
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Only the,,,'s in column three of the second co-efficient matrix have been

changed. Summing equations this reduces to:

. +21-'- -2,,.- ,... .

= P-V2 ('+/)22 - Pn-1 n'\ - 12 - '/2 ,+4 ,1 :

The matrix may be inverted gi'ing:

2 . 2

p= 2 4A ,.+2.)+.. +C-+4 .), ,2 8,.. C +2,) 8.;.,2 (. +2, )
2 2 2

22,

.- ;,( +4.<) Ah .,. (X,+2 )+ "-V' /
s--\ 8, 8/., +2,.). 8 ,2 , /

For this case, the eigen values are reasonably concise expressions and

distinct; so the recurrence relationship may be put in a form that facili-

tates expressing Pn in terms of P1.

Pn = TDT- Pn-1

where

0 .(.-4.,+t-) 0 0

T=!'A( I D402
T , 1 1 :D= 0 0

8/;

-' 1 . 1' \ "
0 0

1+

-l -' 7- + -?. i

T = ~P2' T_!- 74 -9 n-I

1 1\ 2 2 /
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using V_ for F(+81).

Now the equations for the first few states are again special.

o = -AP0 ,0  +bP1l

0 = - C( +/) P , +2P , AP 2

0 = ;p0 , -0(0+2,) pl,0 +4P2,1

0=p 0 =- '2/) 2,2 /(P2,1

By subtracting the first equation from the second, one makes these initial

equations like the general ones as far as the P aud P terms are concerned.
*, n n+l

Define P0 as (p 0) POP 0)t . The recurrence relations can now be written

as P = TDT 1 P0 * The reader unfamiliar with this result for the nth

power of a matrix can verify that (TDT-1)2 = TDT -TDT = TD T -1 . An induc-

tion on n completes the result. Raising a diagonal matrix to the nth power

merely requires raising the elements to the nth power. The expression may

be further simplified by performing the multiplication and rearranging the

result in the form:

4_-- 3+ 1' , ,[--- (A + 4 /,+V)]n

4 4 1 2

P p In
n 0,0! -/ _,

4 2 +/.

This result could, of course, have come from generating function analysis.

This type of analysis has its problems although it is more mechanical. Using

generating functions, one never finds the transformation which puts the

recurrence relationship into simple form. Before finding the transformation,

it was hoped that it might provide heuristics for use in other problems.

The role of the symmetry noted previously is, of course, displayed in the

eigen vectors which are the columns of matrix of the transformation T.

Other than this, little insight seems possible from this example.

The generating functions are easily obtained from the last result

because of the geometric structure. The generating functions are a useful
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method for surIMillZ the probabilitis to evaluate P, and findinJ th ex-

pected value of N1 simult<-necusly. To find the geiierating functions dircctly

from the steady state equations, one may proceed as ii the previous model.

Again let )2Fbe the vector of generatieug functions 71.(z), i = , 1, 2. The

original form of the steady state equations gives:

2 , z 0 0 11PO
? z---.-c 2,.,/zz + -2/, .. /AZ

'0, z-\-2Po<o0

0 '-2, Z,/

Again p 3i = P nnd the sum of these oquations can be divided by z-l.

Thus, one must solve:

/ 'z-) -2 //z0

'Az / . i -,-= p

The result is:

2 22 2 22 3\

(7+2/= - ,z)(+4-(X+4A)z+A ) \ 2- > z) +2,. - AZ)

Summing the components of 7 evaluated at 1 and equating the sum to zero gives

Using A~ ',

2-2 /D
O,0 = 2+ -0

All of these operations are le-itinate if /0 < 1 or the system capacity is

one.

The sum of the derivatives of the generating functions evaluated

at ohe gives:

1( 112- 
/ '-2 i<)

I-/o 8+4 -."-"
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This measure of system performance is interesting when compared to the single

server system with load ratio = / At low loads, the single server

produces less congestion since (12-p-2p 2)/(8+4o) approaches 3/2 as /v approach-

es 0. This is the effect of each job having two phases and the job remain-

ing in the system until the longer phase has been completed. This is precisely

2what one anticipates. Since (12-,-2. )/(8+4-) approaches 3/4 as <oapproaches

1, the situation is reversed at high loads, and the two server system has less

congestion. This result appears to be less intuitive, at least among those

colleagues who have been bold enough to hazard a guess. The heuristic explan-

ation of this phenomenon is the crucial nature of the job requiring excessive

service under heavy load. In the single server case, there is no output from

the system while such a job is in service. On the other hand, in the two-

phase, two-server case, complete blockage requires that two very long phases

occupy the servers simultaneously.

Compared to th, two previous models, this model shows a marked

reduction in congestion as expected. Figure 1 shows the expected number

of jobs in the system for all three models discussed here and the standard

single c.iannel system.

As far as the number of completed job phases is concerned, one

must first find the marginal probabilities in N2 which are given by IF(1).

E(N) = +

This is again the minimum size of this type of inventory found in the first

model. It is interesting that as far as E(N 2 ) is concerned, the increase in

the effective service rate tending to reduce congestion just balances the

effect of increasing the maximum number of jobs in the system.

5. Conclusions

The specific results have been commented on as they were developed

and need not be summarized. A word of caution does need to be added.

Congestion is but one of many measures of system performance and perhaps of

negligible importance in many cases. Furthermore, when one makes compari-

sons among models as nas been done here, he compares them naturally with

respect to the characteristics which happen to be under study. Among the

models discussed here, there are qualitative differences of the greatest
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importance in any real design problem. Thus, one must be cautious in saying

that one system is always preferable to 4nother. What a theoretical inves-

tigation such as this hopes to explore is how strong is the prefereiice of

one over another. For example, there are undoubtedly many situations in

which the increase in service rate due to specialization is so great that

the system of model two is far preferable to that of model taree as far as

congestion is concerned. Thus, none of tne systems here can be ruled out

of design questions on the basis of what is reported here alone. Perhaps

as the study of networks of queues continues, there wiil emerge dominant

forms of organization. This time has not yet come.

The study of these systems was oegun not merely because of their

interest but rather because they are examples of a general class of queuing

networks. This class is that for which the state of the system variable

has more than one dimension and only one component is allowed to have infi-

nitely many values. This permits the discussion of the states in groups.

This sort of system results when one has a network system with only a finite

number of waiting spaces internally but an unlimited number externally.

The internal limitations may be either physical or the result of control

rules. Also implicit in the concept of this class was the requirement that

a group recurrence relationship exist at least from some point on. The

order for the groups is, of course, provided by values of the one queue

permitted to become infinite. The pressing question is how to reduce the

infinite problem to one of solving a small number of linear equations for

the first few states not following the general pattern and then to apply

the recurrence relationship to produce the tails of the distribution. This

is precisely what was done in all three models. The general form of the co-

efficient matrix of the steady state equations was

A* B* C* 0 0 0

10 A B C 0 0

0 0 A B C 0

:0 0 0 A B C,

The matrixes A*, A, B, and C are all square. The fundamental step in solu-

tion was to put this into a truncated form which gives the probabilities up
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to a scale factor.
A* B* C*

A B**

If one can truncate the system here, he can do it at any level with the

same B**. In the cases studied, B** could easily be produced. One may

think in terms of purely formal methods of eliminating C from the last group

of equations, or he can provide an interpretation for B** which can assist

in finding it. The entries of B** are the usual probabilities of single-

step transitions plus some additional probabilities. The latter may be

interpreted as the probability that the state of the system starting from

one state in group n, goes to one of the states in n+l and eventually comes

back to another state in group n, not having been in group n in the mean-

time. Note that the structure assumed in the form of the steady state equa-

tions implies that the only communication between states in group n+l and

group n-1 is through states in group n. Thus, since the state of the system

first moves to group n+l, the restriction that no value in group n is assumed

in the interval is equivalent to saying that the state of the system remains

in group n+l or higher. The length of the time interval required for these

transitions is Immaterial. Another way to think about this is to say that

a new truncated process is considered which agrees with the original one

when the state of the system takes a value in group n or a lower group.

When the state of the system in the original process is In groups higher

than n, the new process is not defined and time is measured only when the

process exists. Clocks are stopped when a transition from n to n+l occurs

and started when the opposite occurs. The two processes have the same

steady state probabilities up to a scale factor. If transitions from group

n+l to group n can only occur from one state in group n+l say (n+lpi), then

the probabilities which convert B to B* are products of probabilities of

leaving group n times the conditional probability of going from (n+l,i) to

a particular state in group n given that a downward transition occurs from

(n+l,i). These are almost immediately available from the state space dia-

gram. In the last two models, they were of the form (1/2) since it was

equally likely to go from (n+l,1) to (n+l,2) or to (n,O). If there had

been two or more states in n+l from which it was possible to move to states
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in group n, it would have been necessary to evaluate these probabilities

considering the possible histories of any length starting from a state in

group n and ending at another state in the group. This opens Pandora's

box, for in general it represents a difficult counting problem typical of

combinational problems.

The other difficulty in the algebra of these problems was putting

the probabilities in the form of sums of geometric terms. This provides a

severe limitation on analytic work since it involves finding roots of poly-

nomials whose degree is equal to the group size. Unfortunately, in more

complex systems this becomes confounded with the truncation problem or per-

haps might as well be attacked simultaneously.

Thus, the amount of understanding of queuing networks which can

be gained from purely analytic work appears to be quite limited. On the

other hand, there certainly is a set of systems slightly more complicated

than those considered here for which reasonable methods of numerical solu-

tion may be found.
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